KORELACJA

Zależność statystyczna zmiennych losowych (korelacja) – związek pomiędzy dwiema zmiennymi losowymi X i Y.

Intuicyjnie, zależność dwóch zmiennych oznacza, że znając wartość jednej z nich, dałoby się przynajmniej w niektórych sytuacjach dokładniej przewidzieć wartość drugiej zmiennej, niż bez tej informacji (...).

Częstym błędem jest przyjmowanie, że zmienne silnie nawet skorelowane są związane jakimś związkiem przyczynowo-skutkowym, tym mocniejszym, im korelacja większa. Uświadamia to taki oto przykład: dźwięk dworcowego zegara wybijającego godzinę pierwszą jest niezwykle silnie skorelowany z odjazdem pociągu o 1:00 ze stacji, nie jest on jednak żadną przyczyną ruchu - i odwrotnie, odjazd pociągu nie jest przyczyną dźwięku. W tym wypadku mamy jedynie do czynienia ze współwystępowaniem zjawisk, a nie związkiem przyczynowo-skutkowym. W związku z tym jeśli czynnik A (np. wykształcenie) i czynnik B (np. zarobki) korelują ze sobą, to powinno się tworzyć przynajmniej kilka hipotez na temat ewentualnego związku przyczynowego między nimi:

  1. Czynnik A wpływa na czynnik B. Tu: wykryto związek między zarobkami a wykształceniem, bo wyższe wykształcenie powoduje że dana osoba więcej zarabia.
  2. Czynnik B wpływa na czynnik A. Tu: ludzie zamożniejsi mają lepszy dostęp do wykształcenia i dlatego istnieje związek między zarobkami a wykształceniem.
  3. Jednocześnie A wpływa na B i B na A Tu: z jednej strony ludzie zamożniejsi mają lepszy dostęp do wykształcenia ale z drugiej ludzie lepiej wykształceni mają lepsze zarobki.
  4. Istnieje czynnik C niezidentyfikowany w badaniu, który koreluje z A i z B. Tu: miejsce zamieszkania (lub ambicje) mogą być czynnikiem, który z jednej strony powoduje, że ktoś więcej zarabia, a z drugiej, że ma wyższe wykształcenie.

Korelacja nie dowodzi więc żadnego związku przyczynowo - skutkowego.

Wśród statystyków jako przykład podawana jest anegdota o tym, że wykryto istotną statystycznie dodatnią zależność pomiędzy liczbą bocianów przypadających na km2 w danym skupisku ludzkim, a przyrostem naturalnym na tym obszarze. Oczywiście nie dowodzi to, że bociany przynoszą dzieci. Na wsi jest średnio większy przyrost naturalny i czasem żyją tam bociany. W mieście przyrost jest mniejszy i nie ma bocianów. Istnienie trzeciej zmiennej – miasto / wieś, skorelowanej zarówno z liczbą bocianów jak i z przyrostem naturalnym powoduje powstanie zależności także tamtych dwóch zmiennych.

W innej wersji mówi się o korelacji liczby bocianów z liczbą dzieci na tym samym terenie wiejskim w skali wielu lat. Okazuje się, że liczba bocianów jest skorelowana dodatnio z ciepłym latem, a przy dobrej pogodzie wzrastać ma też liczba par kochających się na łonie natury.

Prawdopodobnie nie są to wyniki poważnych badań, lecz tylko legenda, niemniej jest ona dobrą ilustracją, jak może powstawać zależność, nie będąca związkiem przyczynowo-skutkowym[2].

Podobnie, można by się dopatrzyć silnej dodatniej korelacji między wzrostem liczby ludności w Indiach a liczbą samochodów w Polsce, choć jest to jedynie czysto statystyczna korelacja, współwystępowanie zjawisk, a nie jakikolwiek związek przyczynowo-skutkowy.

Innym przykładem jest korelacja liczby zgonów osób bezdomnych w Indiach a poziomem spożycia lodów w Stanach Zjednoczonych. Tu trzecią zmienną jest średnia temperatura lata na półkuli północnej. Jej zwiększenie powoduje więcej zgonów spowodowanych upałem i oczywiście zwiększenie spożycia lodów.

Niesprawdzanie istotności statystycznej (...)

Przy zbyt małej próbie fałszywe korelacje mogą powstać zupełnie przypadkowo[3], stąd ważne jest sprawdzanie istotności statystycznej uzyskanego wyniku.

Obserwacje odstające (...)

Innym częstym błędem jest niesprawdzanie, czy w próbie nie występują obserwacje odstające, które mogą całkowicie przekłamać wartość i znak współczynnika korelacji Pearsona. więcej

Autor(ka) wpisu: Barbara Fatyga
Rodzaj słownika: Słownik Wikipedii
Źródło definicji(elektroniczne): hasło "Korelacja" w Wikipedii
Sprawdź pozostałe wpisy w innych słownikach:
Data aktualizacji: czwartek, 15 Maj, 2014 - 12:51